Midterm Exam

(February 14th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

Decimal	BCD	Binary	Reflective Gray Code
42			
			101101
	000101101001		

b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (12 pts.)

REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement		
	110101				
			100000		
			0101101		
-64					
			101000		
		1011001			

c) Convert the following decimal numbers to their 2's complement representations. (3 pts) \checkmark 19.375 \checkmark 16.125

PROBLEM 2 (15 PTS)

• Complete the timing diagram of the circuit shown below. $y = y_3 y_2 y_1 y_0$, $x = x_1 x_0$, $s = s_1 s_0$.

PROBLEM 3 (8 PTS)

PROBLEM 4 (12 PTS)

- A microprocessor has a memory space of 512 KB. Each memory address occupies one byte. 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes. We want to connect four 128 KB memory chips to this microprocessor.
 - \checkmark What is the address bus size (number of bits of the address) of the microprocessor? (1 pt).
 - ✓ For a memory chip of 128 KB, how many bits do we require to address 128 KB of memory? (1 pt).
 - ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips in the figure. (4 pts).
 - ✓ Sketch the circuit that: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when the address falls in the corresponding range. Example: if address=0x2FFFF, → only memory chip 2 is enabled (CE=1). If address=0x6ABC0, → only memory chip 4 is enabled.

PROBLEM 5 (17 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (6 pts) \checkmark 49 + 18 \checkmark 38 - 42
- b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . For each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts) $\sqrt{-37 + 50}$
- c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts) \checkmark -6 x 9

PROBLEM 6 (10 PTS)

• Given two 4-bit <u>signed</u> numbers *A*, *B*, sketch the circuit that computes |A - 2B|. For example: $A = 1010, B = 0110 \rightarrow |A - 2B| = |-6 - 2 \times 6| = 18$. You can only use full adders and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

PROBLEM 7 (18 PTS)

- Sketch the circuit that implements the following Boolean function: $f(a, b, c, d) = (\overline{a \oplus b})(\overline{c \oplus d})$
 - ✓ Using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)
 - ✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)